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Abstract

A new frequency domain subspace algorithm for the estimation of resonant frequencies and quality factors given the

output from time domain computations is developed and tested. It applies the discrete Fourier transform to the time

domain signal and the estimates are computed from the frequency data within the frequency band of interest. Thus, out-

of-band disturbances are suppressed through a band-pass filtering operation in frequency domain, which is free from

the transient effects that are inevitable for standard time domain filtering techniques. We also propose an efficient

procedure to generate short time domain excitations with an a priori specified frequency spectrum. By combining such

excitations with the frequency domain subspace algorithm, we estimated to high accuracy the lowest 167 resonant

frequencies of a three-dimensional bow-tie microwave resonator given two separate time domain computations with, in

total, 23,000 time steps. A free-space computation for a cavity with an aperture shows that the estimation algorithm can

be used to efficiently and accurately extrapolate time domain signals. The tests show that it is possible to reduce the

overall computation time by several orders of magnitude for systems with undamped or weakly damped modes. It

operates as a post-processing step and, thus, decouples the estimation of frequencies and amplitudes from the time

domain solver which offers a considerable flexibility.
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1. Introduction

Time domain computations for electromagnetic problems are currently developing at a high pace. The

finite-difference time-domain (FDTD) scheme [1,2] has found great popularity since it is easy to understand
*Corresponding author. Tel.: +1-217-333-1202; fax: +1-217-333-5962.

E-mail addresses: tryl@uiuc.edu (T. Rylander), mckelvey@s2.chalmers.se (T. McKelvey), viberg@s2.chalmers.se (M. Viberg).

0021-9991/$ - see front matter � 2003 Elsevier B.V. All rights reserved.

doi:10.1016/j.jcp.2003.07.011

mail to: tryl@uiuc.edu


524 T. Rylander et al. / Journal of Computational Physics 192 (2003) 523–545
and program. Although the FDTD scheme was introduced almost four decades ago, it is only relatively

recently that other numerical methods, e.g., the finite element method (FEM) and boundary element

method (BEM), have been formulated and used successfully for time domain computations in electro-
magnetics. The books by Jin [3] and Chew et al. [4] give an account of time domain FEM and recent

advances in time domain BEM, respectively. One reason for the increasingly high interest in time domain

computations is that one single simulation can provide the response of an electromagnetic system in a wide

frequency band, whereas a frequency domain formulation uses one computation for each separate fre-

quency. However, the extraction of frequency domain data given the output from a time domain com-

putation remains problematic. In particular, cases with undamped and weakly damped modes are

challenging, especially for closely spaced eigenfrequencies. A time domain computation requires that the

eigenfrequencies are extracted from the time domain data. In order to reduce the computational cost, it is
highly desirable to use as few time steps as possible to recover the sought frequency data in an a priori

selected frequency band.

In signal processing, the estimation of damped and undamped sinusoidal signals from measurements

is an extensively studied problem. The books by Kay [5] and Stoica and Moses [6] give a good overview

of existing techniques. However, the estimation of closely spaced frequencies is still a challenging

problem, especially when the number of time samples is scarce and/or the number of spectral lines is

large. Existing estimators can coarsely be characterized as non-parametric and parametric ones. Non-

parametric methods search for peaks in a parameter-free spectral estimate. The resolution of such
methods is limited by the available data length. The purpose of parametric methods is to reduce the

amount of data required for a given resolution. The computations typically involve the following two

steps: First, model parameters, e.g., auto-regressive polynomial coefficients, are estimated based on

sample covariances computed from data. The second step involves computing the frequencies, and it can

be implemented in various ways: (1) root-finding of polynomials, (2) eigenvalue calculations or (3) peak

finding in a model associated pseudo-spectrum. Some of the parametric techniques are applicable if the

number of frequencies is low or moderate, e.g., Prony�s method has been exploited for electromagnetic

computations by Ko and Mittra [7] and Pereda et al. [8], while Shaw and Naishadham [9] used an
ARMA modeling for resonant electromagnetic structures. Also the method referred to as Pad�ee ap-

proximation [10] in the electromagnetic literature [11,12] is based on ARMA modeling, but using fre-

quency domain data. In the signal processing literature, Pad�ee approximation usually refers to a special

technique for time domain ARMA modeling, see e.g. [6]. For problems with a large number of fre-

quencies which are also closely spaced, only high resolution techniques such as Kung�s method [13],

ESPRIT [14] or MUSIC [15] can yield satisfactory results. For electromagnetic systems, Bi et al. [16]

applied the MUSIC method to the analysis of resonators, and Liu et al. [17] used the ESPRIT to

compute multi-mode dispersive modal parameters for multi-conductor transmission lines. Though the
mentioned subspace-based frequency estimation techniques offer high resolution, their use is limited to

relatively small numbers of spectral lines and moderately sized data sets because of computational

complexity and numerical difficulty for large problems. The application of parametric techniques to

electromagnetic problems is non-trivial since Maxwell�s equations support an unlimited number of ei-

genfrequencies, and at higher frequencies the spectrum gets increasingly dense. However, the part of the

spectrum of main interest is discrete eigenfrequencies, and for these, it is appropriate to apply methods

of high-resolution estimation.

In this paper we propose two different techniques for enabling high-resolution estimation of a limited
number of frequency components. First, an accurate frequency domain subspace algorithm for fitting a

state-space model (similar to [13]) to frequency domain data (as in [10–12]) is proposed and tested for

problems in electromagnetics. The method is capable of giving exact results on noise-free data, regardless of

the frequency separation. Further, it can simultaneously use multiple channels for the estimation in the case

of imperfect data, where each channel can be a linear combination of all six field components sampled at
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different spatial locations. The algorithm uses a subset of the discrete Fourier transform (DFT) data, where

the selected DFT points reside in the frequency band of interest. Working on a subset of the DFT data

corresponds to a band-pass filtering operation which suppresses out-of-band disturbances and it reduces
the computational cost. Some preliminary tests with the proposed algorithm for undamped sinusoids are

reported in [18]. Second, a technique for selecting the excitation signal is suggested, that limits the frequency

support of the electromagnetic signals to the band of interest. This has the advantage of further reducing

out-of-band interference, in addition to that offered by the Fourier transform pre-processing. In essence,

the excitation selection is cast as a finite impulse response (FIR) filter design problem, for which a multitude

of algorithmic tools exist. The two signal processing algorithms are general in nature and could be applied

to any estimation situation involving harmonics which is found in, e.g., electrical circuit-theory, telecom-

munications, acoustics, solid mechanics and quantum mechanics.
2. Signal models

The field solution of an autonomous linear electromagnetic system can be represented as a superposition

of eigenmodes with the complex eigenfrequencies br ¼ �cr þ ixr, where cr is the damping and xr is the

angular frequency for the rth eigenmode. The characterization of such a system is normally formulated in

terms of linear functionals Lp of, e.g., the electric field ~EEð~rr; tÞ, where p ¼ 1; . . . ; P . The output yðnÞ 2 CP�1

from a time domain computation can then be expressed as:

yðnÞ ¼

L1ð~EEð~rr; nDtÞÞ
L2ð~EEð~rr; nDtÞÞ

..

.

LP ð~EEð~rr; nDtÞÞ

2
666664

3
777775

ð1Þ

,

XR
r¼1

are
brnDt þ wðnÞ; ð2Þ

where Dt denotes the time step and n ¼ 0; . . . ;N � 1 is the time index. The signal model (2) of the output (1)

captures R resonances, and it is characterized by the complex frequencies br 2 C and amplitudes ar 2 CP�1

while wðnÞ 2 CP�1 corresponds to disturbances. In the case of simulated data such disturbances can orig-

inate from round-off errors, approximately solved systems of linear equations (by, e.g., iterative solvers)

and other non-sinusoidal signals which are supported by the numerical scheme and unintentionally excited.
The unknown frequencies br and amplitudes ar are to be estimated. The model includes vector valued

signals if P > 1 and real-valued signals is a special case.

To make the model unique we assume that the frequencies br are distinct, xrDt 2 ð�p; pÞ and ar 6¼ 0 for

all r ¼ 1; . . . ;R. First, we treat the case when the disturbance term wðnÞ is zero and will later in Section 3.3

discuss the realistic case when wðnÞ 6¼ 0. We introduce the matrix notation

A ¼ diag½eb1Dt; eb2Dt; . . . ; ebRDt� 2 CR�R;

C ¼ ½ a1 a2 � � � aR � 2 CP�R; and

x0 ¼ ½ 1 1 � � � 1 �T 2 RR�1

ð3Þ

as a preparation for the development of the estimation method. With this matrix notation we can com-

pactly write yðnÞ ¼ CAnx0. Note that the A matrix is diagonal and hence the R eigenvalues of A are ebrDt.
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The representation of yðnÞ given by the matrix triple ðA;C; x0Þ defined in Eq. (3) is called a realization and it

is not unique. Take an arbitrary non-singular matrix T 2 CR�R. Then the matrix triple ð~AA; ~CC; ~xx0Þ,
ðT�1AT;CT;T�1x0Þ is also a valid realization of yðnÞ, because yðnÞ ¼ ~CC~AAn~xx0. Note that the eigenvalues of ~AA
are still ebrDt.

Given the matrix notation, a simple recursive formula for calculating yðnÞ exists, and it is called a state-

space model

xðnþ 1Þ ¼ AxðnÞ; xð0Þ ¼ x0;

yðnÞ ¼ CxðnÞ;
ð4Þ

where the state xðnÞ 2 CR�1 is the memory vector in the recursion. Associated with a state-space model is

the observability matrix

OS ¼

C

CA

..

.

CAS�1

2
664

3
775 2 CPS�R: ð5Þ

If the number of block rows S is larger than R it is called the extended observability matrix. Note that if

OS is the observability matrix of the realization ðA;C; x0Þ then, OST is the observability matrix of the

realization ð~AA; ~CC; ~xx0Þ. This implies that the range space of the observability matrix is invariant with respect

to the realization and is a property of the signal yðnÞ. The observability matrix OS has full rank R if (for all

r ¼ 1; . . . ;R) the frequencies br are distinct, xrDt belong to the interval ð�p; pÞ, ar 6¼ 0, and SPR. The
result [6] follows by noting that OS has a Vandermonde type structure.
2.1. Periodic embedding

A signal xðnÞ is called N -periodic if xðnÞ ¼ xðnþ kNÞ for all integers k and n ¼ 0; . . . ;N � 1. The signal

model (2) gives an N -periodic signal yðnÞ if and only if cr ¼ 0 and frT is an integer, where r ¼ 1; . . . ;R and

the total measurement time is denoted by T ¼ NDt. For this special case, the DFT coefficients of the signal
(i.e., yðnÞ for n ¼ 0; . . . ;N � 1) are the coefficients of the Fourier series expansion of yðnÞ. This is a desirable
property of the DFT and we recover it for an arbitrary signal model (2) by extending the state-space model

(4) with an artificial input signal, which creates an observationally identical state-space model which is N -

periodic outside the measurement interval n ¼ 0; . . . ;N � 1. We call this periodic embedding, and the

modified version of the state-space model is given by

xðnþ 1Þ ¼ AxðnÞ þ buðnÞ; xð0Þ ¼ x0;

yðnÞ ¼ CxðnÞ;
ð6Þ

where uðnÞ is defined as

uðnÞ, 1 n ¼ kN � 1; k ¼ 1; 2; . . . ;
0 otherwise;

�
ð7Þ

which is an N -periodic signal. If b is chosen as

b, ðI� ANÞx0 ð8Þ
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it directly follows that xðNÞ ¼ x0, and all signals in Eqs. (6) are therefore N -periodic. Note that in the

measurement interval, the output yðnÞ of the modified signal model (6) equals that of the original model (4),

and consequently both models are valid for the observed signal. The column vector b is identically zero

when I� AN ¼ 0. This happens for the undamped case when the observation interval encompasses exactly

an integer number of periods for all sinusoids, and the modification by an input is not necessary to make

the signal N -periodic. It is important to note that the periodic embedding is merely a trick enabling a simple

derivation of the method. As we will see, it results in a specific term designed to cancel the effect of the

original signal not being N -periodic. Contrary to what might be thought, we are therefore not introducing
any artificial assumptions by adopting the extended model.
2.2. Frequency domain model

The N -point DFT of a signal xðnÞ is for n ¼ 0; . . . ;N � 1 given by

�xxðqÞ,DFTfxðnÞgðqÞ,
XN�1

n¼0

xðnÞW �qn
N ; ð9Þ

where W q
N , expði2pq=NÞ and q denotes the DFT frequency. Consider the modified model (6). Due to the

N -periodicity of xðnÞ it follows that xðNÞ ¼ xð0Þ and hence

DFTfxðnþ 1ÞgðqÞ ¼
XN�1

n¼0

xðnþ 1ÞW �qn
N ¼ W q

N

XN�1

n¼0

xðnþ 1ÞW �qðnþ1Þ
N ¼ W q

N �xxðqÞ:

The modified signal model (6) can therefore be expressed in the DFT domain as

W q
N �xxðqÞ ¼ A�xxðqÞ þ b�uuðqÞ;

�yyðqÞ ¼ C�xxðqÞ;
ð10Þ

where �yyðqÞ,DFTfyðnÞgðqÞ and �uuðqÞ,DFTfuðnÞgðqÞ ¼ W q
N .
3. Estimation algorithm

The derivation of our estimation algorithm starts by forming a vector relation by repeatedly using Eqs.

(10). It is easy to show that for the DFT frequency q we have

yq ¼ OS�xxðqÞ þGSuq; ð11Þ

where

yq,

�yyðqÞ
W q

N �yyðqÞ
W 2q

N �yyðqÞ
..
.

W ðS�1Þq
N �yyðqÞ

2
666664

3
777775
; uq,

�uuðqÞ
W q

N �uuðqÞ
W 2q

N �uuðqÞ
..
.

W ðS�1Þq
N �uuðqÞ

2
666664

3
777775
;

and the lower triangular Toeplitz matrix GS is
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GS,

0 0 0 . . . 0 0

Cb 0 0 . . . 0 0

CAb Cb 0 . . . 0 0

CA2b CAb Cb . . . 0 0

..

. ..
. ..

. . .
. ..

. ..
.

CAS�2b CAS�3b CAS�4b . . . Cb 0

2
6666664

3
7777775
:

Now, assume that a subset of the frequencies on the DFT-grid is selected and denote the M selected fre-

quency indices by q1; . . . ; qM . We will use theseM points of the DFT to estimate the sought frequencies. The

reason for considering a subset of the DFT data is to provide suppression of interfering signal components
residing outside the frequency band of interest, which considerably simplifies the estimation problem. The

method works for 2R < M 6N , where M ¼ N implies that all DFT points are used. The final data matrices

are formed by assembling the data vectors as:

Y, ½ yq1 yq2 � � � yqM �; ð12Þ
U, ½ uq1 uq2 � � � uqM �; and ð13Þ
X, ½ �xxðq1Þ �xxðq2Þ � � � �xxðqMÞ �; ð14Þ

and the vector relation (11) is expanded to a matrix one

Y ¼ OSXþGSU: ð15Þ

Hence the DFT data in Y is a sum of two matrix components. The rank of the matrix product OSX
equals R, and the second term is the product of the known matrix U and the unknown matrix GS. In order

to retrieve the frequencies, it suffices to get an estimate of the range space of the extended-observability

matrix OS . The matrix equation (15) has a structure which is well known in the area of subspace based

system identification methods [19–21].
3.1. Subspace based method

Starting from the derived identity (15) the identification method consists of the following steps:

(1) Remove the influence of the term GSU.

(2) Find a matrix ZS which is an estimate of the range space of OS .

(3) From ZS estimate a matrix ÂA which is similar to the original matrix A.

(4) Determine the eigenvalues k̂kr of the matrix ÂA and let the frequency estimates be b̂br ¼ ðDtÞ�1
log k̂kr.

(5) Estimate the complex amplitudes âar of the sinusoids using linear regression.

Each step is now described in more detail.

In subspace methods a standard way to remove the GSU term is by a projection. Define the projection

matrix

P?
, I�UH ðUUH Þ�1

U; ð16Þ

which projects onto the nullspace of U. Here, UH denotes the complex conjugate and transpose of U.

Applying this projection from right in Eq. (15) results in

YP? ¼ OSXP
?: ð17Þ
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If S6M � R it can be shown with a technique similar to [21, Lemma 5] rankfXP?g ¼ R. Hence,

rankfYP?g ¼ R so the projection matrix does not cancel any part of the range space of OS .

The range space of OS is determined by factoring YP? into two rank R matrices. In the noisy case YP?

will have full rank and we seek for a rank R factorization which is a good approximation. The singular

value decomposition (SVD) [22] gives the desired factorization

YP? ¼ ½ZS Z0 �
SS 0

0 S0

� �
VH

S

VH
0

� �
; ð18Þ

where SS denotes the R largest singular values. As an estimate of the range space of the observability matrix

OS we simply take ZS as a basis for the range space. In the noise-free case the range space is exactly re-

covered since, then, S0 is zero and YP? ¼ ZSSSV
H
S so there exists a nonsingular matrix T such that

ZS ¼ OST. Consequently ZS is an extended-observability matrix for a particular realization of the observed

signal yðnÞ.
The extended-observability matrix (5) has a special block row structure, where each new block-row is the

previous block row multiplied by A. Using the shift structure of the observability matrix, a matrix ÂA is

determined by minimizing the Frobenius norm (least-squares)

min
A

kdZSeA� bZSck2F ; ð19Þ

where dZSe and bZSc denotes the P ðS � 1Þ first and last rows of ZS , respectively. The solution is unique

since when S > R the matrix dZSe has full rank since dOSe has full rank. The fitting problem can alter-

natively be solved using the total-least-squares (TLS) method [22], which exhibits better threshold prop-

erties than does the standard LS method. Finally, the normalized frequency estimates b̂brDt are the

logarithm of the eigenvalues of ÂA. The method of low rank approximation using the SVD and then using

the shift-invariant property of the observability matrix to retrieve A is known from, e.g. [13,14].

The method has a parameter S called the auxiliary model order. It determines the number of block rows
in OS , and must satisfy R < S6M � R. The minimum amount of data needed for a given R is obtained by

setting S ¼ Rþ 1, which gives Mmin ¼ 2Rþ 1.

Straightforward application of the DFT to yðnÞ yields

�yyðqÞ ¼
X

brDt 6¼2pq=N
r

ar
1� ebrNDt

1� W �q
N ebrDt

þ
X

brDt¼2pq=N
r

arN : ð20Þ

Hence, �yyðqÞ is a linear function of the complex amplitudes ar when br are known (or estimated as above).

Therefore, âar can be estimated by linear regression as a final step.
3.2. Real-valued signals

The case when yðnÞ is a real-valued signal is included in the signal model (2). The model order R is then
twice the number of real sinusoids and the frequencies and amplitudes are pairwise complex conjugated,

i.e., br ¼ b�
rþ1 and ar ¼ a�rþ1 for r odd. When yðnÞ is real there also exists state-space realizations of the

signal with only real-valued matrices. This implies that the extended-observability space can be represented

by a real-valued matrix. The method can be modified to impose the real-valued signal constraint by only

estimating a real-valued observability matrix and is accomplished by calculating the SVD of the real matrix

(similar to [23])

½Re YP? Im YP? � ¼ OS½Re XP? Im XP? �: ð21Þ
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This leads to a real-valued ÂAwhich has complex conjugated eigenvalues, and hence the estimated frequencies

will be pairwise complex conjugated as desired. Since the number of columns are doubled in Eq. (21), the valid

interval for the auxiliary model order becomes R < S6 2M � R. Note that in the real valued case the DFT

coefficients corresponding to negative frequencies gives no additional information since �yyðqÞ ¼ �yy�ðN � qÞ.

3.3. Reduction of disturbances

A measured signal will to some extent always be subject to disturbances. Commonly we model such

disturbances as additive random signals. The presented method suppresses the influence of disturbances in

two ways. First, the DFT provides an averaging of the random disturbances which leads to a reduction of

the variance if M < N . The frequency domain filtering, by only using a subset of the DFT coefficients, also

suppresses disturbances with spectral energy residing outside the selected frequency interval. A second
reduction is also obtained by the SVD factorization where a full rank matrix YP? is approximated by a

rank R one.

In the lossless case when br ¼ ixr for r ¼ 1; . . . ;R, the sinusoidal signal can be time reversed and complex

conjugated and still be described by the same basic model of the same order. Hence, we can artificially

double the number of observations by considering the backward signal as an additional vector observation.

Combining the forward and backward signals is a well known method for the frequency estimation

problem [5], as it often improves the estimation accuracy. Assume the signal yðnÞ in Eq. (1) is observed for

n ¼ 0; . . . ;N � 1, and define a new backward signal which is the time reversed conjugate of yðnÞ. By joining
the forward and backward signals

yfbðnÞ,
yðnÞ

y�ðN � 1� nÞ

� �
; n ¼ 0; . . . ;N � 1; ð22Þ

it is easy to show that

yfbðnÞ ¼
XR
r¼1

ar
a�re

�ixrðN�1ÞDt

� �
eixrnDt: ð23Þ

Note that the compound forward–backward signal yfbðnÞ is still described with R complex sinusoids. Since the

forward–backward signal is a sum of vector-valued sinusoids the method presented above directly applies.
4. Numerical results

We test the frequency domain subspace algorithm in three different settings. In the first test case, we use

the FDTD scheme to solve for the electromagnetic fields in a brick shaped cavity and we investigate the

estimation of eigenfrequencies for both lossless and lossy homogeneous materials inside the cavity. As a

second test case, we consider the FEM applied to a lossless three-dimensional bow-tie microwave resonator,

which is discretized by an unstructured grid of tetrahedrons. For the final test case, we use the FDTD

scheme for a free-space computation which involves a brick shaped metal cavity with an aperture and

estimate the resonant frequencies and quality factors for the lowest modes. The tests are for real-valued
signals and we estimate ÂA by the least-squares method as shown in Eq. (19).

4.1. Test 1 – Brick shaped cavity

The first test case is a brick shaped cavity with perfect electric conductor (PEC) walls. We place one
corner of the cavity at the origin and align the edges of the cavity with the positive axes of a Cartesian
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coordinate system. The sides of the cavity are lx ¼ 11 mm, ly ¼ 13 mm and lz ¼ 17 mm along the x-, y- and
z-axis, respectively. The interior of the cavity is characterized by a homogeneous medium with �r ¼ lr ¼ 1

and the conductivity rP 0. We exploit the FDTD scheme to solve for the electromagnetic fields inside the
cavity which is discretized by cubes of side h. The time step is set to the Courant limit Dt ¼ h=

ffiffiffi
3

p
c0, where c0

is the speed of light.

Given the difference equations of the FDTD scheme applied to the brick cavity with PEC walls, there are

analytical expressions for the numerical eigenfrequencies and eigenmodes. Consequently, we can construct

an initial condition by forming a linear combination of the eigenmodes with prescribed magnitude and

phase. Clearly, this will not be feasible for a general case but it allows us to fully control the spectrum of the

solution which is useful for testing. The analytical expression for the numerical eigenfrequencies x in the

lossless case ðr ¼ 0Þ is given by

h
c0Dt

sin
xDt
2

� �� �2
¼ sin2 kxh

2

� �
þ sin2 kyh

2

� �
þ sin2 kzh

2

� �
; ð24Þ

where kx ¼ pnx=lx, ky ¼ pny=ly and kz ¼ pnz=lz, with appropriate integer values for nx, ny and nz. For the
lossy case r > 0, the numerical eigenfrequencies b ¼ �cþ ix satisfy

expðbDtÞ ¼
n2 � j2 � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2ð2n2 � j2Þ � f2

q
n2 þ f

; ð25Þ

where j2 ¼ 4h�2½sin2ðkxh=2Þ þ sin2ðkyh=2Þ þ sin2ðkzh=2Þ�, n2 ¼ 2l0�0=Dt
2 and f ¼ l0r=Dt.

In the tests for the brick shaped cavity, we choose to record the signal

yðnÞ ¼
x̂x �~EEð~rr0 þ h=2x̂x; nÞ
ŷy �~EEð~rr0 þ h=2ŷy; nÞ
ẑz �~EEð~rr0 þ h=2ẑz; nÞ

2
64

3
75; ð26Þ

where~rr0 ¼ ð3h; 5h; 7hÞ and x̂x is the unit vector along the x-axis, etc.
4.1.1. Excitation by initial conditions

We construct an initial condition for the FDTD computation by setting the magnitudes to unity and the

phases to random numbers for the modes with the R=2 lowest eigenfrequencies, where R is an even integer.

The magnitudes of the remaining modes are set to zero. Thus, the model order R is equal to twice the

number of excited modes and we use all DFT points for the estimation, i.e., M ¼ N .

For this setting, we compute the relative error from er ¼ jx̂xr � xrj=jxrj and study its maximum value

emax ¼ maxr er as a function of the number of time steps N used by the frequency domain subspace al-
gorithm. Fig. 1 shows emax computed from the compound forward–backward signal yfbðnÞ, which is con-

structed according to Eq. (22). The dashed curves indicate S ¼ Smin ¼ Rþ 1 while solid curves are based on

S ¼ 2Smin for the four cases: (a) R=2 ¼ 10 (�), (b) R=2 ¼ 20 (4), (c) R=2 ¼ 40 (}) and (d) R=2 ¼ 80 (5),

where these symbols carry the information about R=2 throughout this section.

Next, we study the case when only the forward signal yðnÞ is used and the corresponding results are

shown in Fig. 2, where dashed curves are computed with S ¼ Smin and solid curves with S ¼ 4Smin. The

combination S ¼ Smin and R=2 ¼ 80 is not shown in Fig. 2 since the maximum relative error is roughly unity

for N 6 7500. Note that yðnÞ with a higher auxiliary model order S can give roughly the same accuracy in
the estimated frequencies as the forward–backward signal yfbðnÞ with a lower S.

For the results presented in Figs. 1 and 2, we used the FDTD cell size h ¼ 1 mm and computed xr

from Eq. (24). As compared to the physical eigenfrequencies, which are recovered when h ! 0, the



Fig. 1. The maximum relative error maxr jx̂xr � xrj=jxrj given the joined forward–backward signal yfbðnÞ when S ¼ Smin ¼ Rþ 1

(dashed curves) and S ¼ 2Smin (solid curves) for: (a) R=2 ¼ 10 (�), (b) R=2 ¼ 20 (4), (c) R=2 ¼ 40 (}), and (d) R=2 ¼ 80 (5).
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relative error in xr when h ¼ 1 mm is in the interval from 0.02% to 2.5% for the lowest 80 eigenfre-

quencies of the brick cavity. An error of a couple of percent is acceptable for many engineering ap-

plications. We conclude that, for r ¼ 0, the error introduced by the frequency domain subspace

algorithm can be made negligible as compared to the discretization error of the FDTD scheme.

Moreover, the accuracy in the estimates is satisfactory for extrapolation of the eigenfrequencies to zero

cell size as well as when the frequency domain subspace algorithm is applied to sampled data computed

by higher order finite difference or finite element schemes. In fact, the frequency domain subspace al-
gorithm in conjunction with an infinite precision computer would yield exact frequency estimates

x̂xr ¼ xr. The results shown in Figs. 1 and 2 are, thus, a consequence of the estimation performed with

16 digits of precision.

Next, we investigate the lossy case r > 0 where, as previously discussed, we can only use the forward

signal for the frequency estimation. Fig. 3 shows the maximum relative error (based on er ¼ jb̂br � brj=jbrj)
when S ¼ 4Smin. Solid, dashed and dash-dotted curves indicate the results when r ¼ 0:01, r ¼ 0:1 and

r ¼ 1, respectively. We find that emax as a function of the number of time steps does not change significantly

for r < 0:01, as compared to the results achieved for r ¼ 0:01. We define the quality factor as

Qr,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2r þ x2

r

p
2cr

ð27Þ

for the rth resonance. We have 8 < Qr < 30 when r ¼ 0:1 for the lowest 80 eigenmodes of the cavity and,

similarly, 80 < Qr < 300 when r ¼ 0:01. In the current setting with r ¼ 1, we cannot compute accurate

estimates for the frequencies when R=2 ¼ 20, 40 or 80 but for the case R=2 ¼ 10 (with 0:8 < Qr < 1:6) we
can achieve emax < 10�6.



Fig. 2. The maximum relative error maxr jx̂xr � xrj=jxrj given only the forward signal yðnÞ when S ¼ Smin ¼ Rþ 1 (dashed curves) and

S ¼ 4Smin (solid curves) for: (a) R=2 ¼ 10 (�), (b) R=2 ¼ 20 (4), (c) R=2 ¼ 40 (}), and (d) R=2 ¼ 80 (5).
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The brick shaped cavity supports a number of eigenmodes with degenerated eigenfrequencies. The

corresponding numerical eigenfrequencies, computed by the FDTD scheme employed here, are also de-

generated. Each numerically degenerated eigenfrequency appear only once among the estimates since a

unique signal model (2) requires that the frequencies br are distinct. Physically degenerated eigenfrequencies

might get separated in the numerical solution of the problem, e.g., when the FEM uses an unstructured

grid.

The frequency domain subspace algorithm can be interpreted as a frequency domain version of the well
known ESPRIT [14] and the two methods are closely related for the case when the frequency domain

subspace algorithm uses all the DFT points for the estimation, which is the case for the tests above. This is

confirmed by additional tests where the standard ESPRIT is applied to the previous test cases and, almost

identically, reproduced the results shown in Figs. 1–3. However, the frequency domain subspace algorithm

can also work with a subset of DFT points in a preselected sub-band, which allows for suppression of out-

of-band disturbances and reduction of the computational cost. We explore this feature after a discussion on

the temporal dependence of the excitation.
4.1.2. Excitation by time dependent sources

For most applications of interest, the numerical eigenfrequencies and eigenmodes are not known a

priori. We can treat such a situation by exciting the system with a boundary condition or a source current
which is the product of some fixed spatially dependent function and an amplitude with a specified time

dependence. Specifically for the brick cavity, we use the amplitude IðnÞ for the current along the edges



Fig. 3. The maximum relative error maxr jb̂br � brj=jbrj given the forward signal yðnÞ and S ¼ 4Smin ¼ 4ðRþ 1Þ when r ¼ 0:01 (solid

curves), r ¼ 0:1 (dashed curves) and r ¼ 1 (dash-dotted curve) for: (a) R=2 ¼ 10 (�), (b) R=2 ¼ 20 (4), (c) R=2 ¼ 40 (}), and (d)

R=2 ¼ 80 (5).
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forming the closed loop shown in Fig. 4. This kind of current loop ensures that the electrostatic solutions
~EE ¼ �r/, which are supported by the FDTD scheme, are not excited.

A sinusoidal which is amplitude modulated with a Gaussian is a popular choice for time varying exci-

tations in electromagnetic computations. This gives a signal which is optimal in the sense that the mean-
square sense time-bandwidth product is the smallest possible [24]. For the proposed frequency domain

subspace algorithm, however, it is desirable to create a time dependent excitation such that its frequency

spectrum has a unity magnitude in the frequency band of interest and a zero magnitude outside this band.

Clearly, it is of general interest in time domain computations to use sources which only excite the frequency

band where the response is sought.

Relatively short time domain signals with a favorable spectrum can be constructed by exploiting the

well-established digital filter design technology developed for signal processing. The impulse response of the

filter is then used for the time dependence IðnÞ of the excitation, i.e., we set IðnÞ ¼ FðdðnÞÞ where F de-
notes the filter and dðnÞ is the discrete-time unit impulse function (dð0Þ ¼ 1 and dðnÞ ¼ 0 for n > 0). For a

computation of the lowest eigenfrequencies, we wish to design a low-pass filter with steep roll off and large

attenuation in the stop-band. We denote the pass-band and stop-band edge frequencies by fp and fs, re-
spectively, and the corresponding peak ripple values by dp and ds. In the following, we use remezord and

remez implemented in MATLAB to design lowpass filters with dp ¼ 0:1 and ds ¼ 10�8. The pass-band and

stop-band magnitudes are set to unity and zero, respectively. The roll off and stop-band ripple of a low

order filter can efficiently be improved by using the impulse response of the filter as the input to the filter

itself, i.e., we set IðnÞ ¼ FðFðdðnÞÞÞ. Obviously, this ‘‘refiltering’’ can be exploited several times but with



Fig. 4. The current loop exciting the FDTD computation for the cell size h ¼ 1 mm. The cavity has one corner at origin and its edges

are aligned with the positive x-, y- and z-axes.
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the cost of increasing the length of the time domain excitation signal and the pass-band ripple dp. One

refiltering gives a stop-band with the amplitude response d2s ¼ 10�16 which is essentially zero as compared to
the close to unity pass-band response when using a computer with 16 digits of precision.

4.1.3. Determination of the model order

In Section 4.1.1, we set the model order equal to twice the number of eigenfrequencies based on the
precise knowledge of the solution. For realistic applications, however, the number of eigenfrequencies

which reside in a preselected frequency band is a priori unknown and the model order R must be deter-

mined. In many cases, a rough estimate of R can be found, e.g., by using a simplified model of the elec-

tromagnetic system. Equipped with such an estimate, an appropriate combination of the auxiliary model

order S and the number of time steps N can be chosen from Figs. 1–3 or similar information. After the data

yðnÞ have been sampled from the electromagnetic computation, we use the frequency domain subspace

algorithm with the selected DFT points and auxiliary model order S to compute the singular values in Eq.

(18). The singular values appear in pairs, i.e., one pair for each real-valued sinusoid, and ideally they
separate into two distinct groups: (A) large singular values which correspond to sinusoids with large energy

and (B) small singular values which represent the disturbances wðnÞ. Given an appropriate selection of the

involved parameters, the two groups are separated by a significant gap and we set the model order R equal

to the number of large singular values associated with group A.

This procedure to determine the model order is demonstrated for the lossless brick cavity excited by the

current loop shown in Fig. 4. The time dependence of the current is based on a lowpass filter with
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fpDt ¼ 0:048 and fsDt ¼ 0:053. This choice of fp and fs will excite the nine lowest eigenfrequencies and we

search for these eigenfrequencies in the frequency band 0 < fDt6 0:1. We record the signal yðnÞ during

N ¼ 400 time steps (which givesM ¼ 39) and exploit the compound forward–backward signal yfbðnÞ for the
frequency estimation. The spectrum of the excitation j�IIðqÞj is shown in Fig. 5 by the dashed line and the

response j�yyðqÞj is shown by the solid line with circles indicating the DFT frequencies. It should be noted

that the spectrum of the undamped sinusoidal response is computed from a time domain signal with only

N ¼ 400 samples and that this signal is not N -periodic. Therefore, the response suffers from a considerable

amount of spectral leakage, which is clearly displayed in Fig. 5. On the other hand, the spectrum of the

excitation signal is computed from all of its non-zero values, which gives a spectrum without leakage. The

lowest eigenfrequencies computed from Eq. (24) are indicated by the dotted vertical lines in Fig. 5 and,

obviously, only the modes in the frequency band 0 < fDt < fsDt are excited.
We apply the frequency domain subspace algorithm to yðnÞ and study the singular values of Eq. (18).

Here, we test all feasible values for the auxiliary model order S, i.e., S ¼ 2; . . . ; 2M � 1 where M ¼ 39, in

order to study the sensitivity of the singular values with respect to S. Note that the total number of singular

values given from Eq. (18) depends on S, and we get at least two and at most 66 singular values. The

computed singular values fall on the vertical lines in-between the terminating triangles shown in Fig. 6,

where (for each individual S) the singular values are sorted in descending order and labeled consecutively

with integer indices starting from one. The singular values computed for S ¼ 19 are indicated by horizontal

lines in Fig. 6. We note that the singular values are rather insensitive to the selected auxiliary model order S.
The first group A consists of large singular values which correspond to sinusoids with large energy in the

preselected frequency band and, consequently, we set the model order R equal to the number of singular

values in group A, i.e., R=2 ¼ 9.

The size of the gap which separates the two groups of singular values can be controlled by the transition

region in-between the pass- and stop-band of the filter used for the time dependence of the excitation.

Provided that the spatial configuration of the excitation couples well to the eigenmodes of interest, a
Fig. 5. The excitation and response for the brick cavity: dashed line – magnitude of the DFT for the excitation IðnÞ, solid line with

circles – magnitude of the DFT for the response yðnÞ and dotted vertical lines – eigenfrequencies given from Eq. (24).



Fig. 6. The computed singular values for S ¼ 2; . . . ; 2M � 1 fall on the bars shown by the vertical lines terminated by triangles. For

each S, the singular values are sorted in descending order and labeled consecutively with integer indices starting from one. The singular

values computed for S ¼ 19 are indicated by horizontal lines.
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transition region ðfp; fsÞ occupied by eigenfrequencies fr implies that the corresponding eigenmodes will be

gradually less excited as their eigenfrequencies are located closer to the stop-band. Correspondingly, the

gap which separates the two groups of singular values will be less pronounced. This is less of a problem in

practice, however, since the spectrum of the excitation is known and this information can be used to in-

terpret the estimated frequencies together with their amplitudes.

The excitation used for Figs. 5 and 6 has a duration of 1802 time steps. In fact, the number of time steps

used for the excitation can be reduced considerably without loosing the possibility to estimate the model

order R from the singular values. Therefore, we lower the pass-band edge frequency to fpDt ¼ 0:038, which
gives an excitation with the duration of 602 time steps. The remaining parameters in the above setting are

kept and we use S ¼ 19.

For this new excitation, we investigate the estimated eigenfrequencies for the model orders R=2 ¼
8; 9; 10 and 11. For the model order R=2 ¼ 9, Table 1 shows the values for kâark ¼ ðâaHr âarÞ

1=2
and f̂frDt
Table 1

The estimated amplitudes and frequencies for R=2 ¼ 9 together with the relative error in the estimated frequencies

kâark f̂frDt jf̂fr � frj=jfrj

1.4880� 10�5 0.0279327 5.5� 10�15

2.3219� 10�5 0.0312200 9.2� 10�15

1.6033� 10�5 0.0343410 5.9� 10�15

1.2256� 10�5 0.0383322 3.3� 10�15

2.0656� 10�6 0.0404952 1.6� 10�14

1.1496� 10�6 0.0428419 1.2� 10�14

7.5826� 10�11 0.0473102 1.1� 10�10

1.6427� 10�10 0.0483003 5.2� 10�11

8.7975� 10�15 0.0513926 7.1� 10�7



Table 2

The estimated amplitudes and frequencies for R=2 ¼ 8, 10 and 11

R=2 ¼ 8 R=2 ¼ 10 R=2 ¼ 11

kâark f̂frDt kâark f̂frDt kâark f̂frDt

1.4880� 10�5 0.0279327 1.4880� 10�5 0.0279327 1.4880� 10�5 0.0279327

2.3219� 10�5 0.0312200 2.3219� 10�5 0.0312200 2.3219� 10�5 0.0312200

1.6033� 10�5 0.0343410 1.6033� 10�5 0.0343410 1.6033� 10�5 0.0343410

1.2256� 10�5 0.0383322 1.2256� 10�5 0.0383322 1.2256� 10�5 0.0383322

2.0656� 10�6 0.0404952 2.0656� 10�6 0.0404952 2.0656� 10�6 0.0404952

1.1496� 10�6 0.0428419 1.1496� 10�6 0.0428419 1.1496� 10�6 0.0428419

7.5831� 10�11 0.0473103 7.5826� 10�11 0.0473102 7.5826� 10�11 0.0473102

1.6425� 10�10 0.0483005 1.6427� 10�10 0.0483003 1.6427� 10�10 0.0483003

– – 8.7974� 10�15 0.0513926 8.7974� 10�15 0.0513925

– – 2.0393� 10�19 0.0881328 2.4425� 10�19 0.0860387

– – – – 2.9695� 10�19 0.0879041
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together with the relative error in the estimated eigenfrequencies, where the estimates âar are computed by

linear regression. It is noticed that the frequency estimates are less accurate for sinusoids with smaller

amplitudes, i.e., those residing in the transition region in-between the pass- and stop-band.

Table 2 shows the corresponding values kâark and f̂frDt when the model order is R=2 ¼ 8, 10 and 11. We
find that, as R=2 is incremented from 10 to 11, the tenth eigenfrequency (which has a very small amplitude)

changes while the first nine eigenfrequencies take the same values as shown in Table 1. This is a strong

distinguishing feature that the correct model order is R=2 ¼ 9.

4.2. Test 2 – Three-dimensional bow-tie microwave resonator

As a second test case, we consider the three-dimensional bow-tie microwave resonator shown in Fig. 7,

where the PEC walls of the cavity are discretized by triangles. The cavity region is based on the cube which

occupies the volume jxj < 100 mm, jyj < 100 mm and jzj < 100 mm. From this cube, we remove the volume

inside two spheres with radii Rx ¼ 200 mm centered along the x-axis at x ¼ �250 mm. Similarly, we remove

the volume inside the spheres with radii Ry ¼ 250 mm centered along the y-axis at y ¼ �300 mm and the

spheres with radii Rz ¼ 300 mm centered along the z-axis at z ¼ �350 mm. The cavity is discretized by

unstructured tetrahedrons with the average edge length h ’ 6:3 mm.
For this discretization, we apply Galerkin�s method to Maxwell�s equations

r�r�~EEð~rr; tÞ þ c�2
0 o2t

~EEð~rr; tÞ ¼ �l0ot~JJð~rr; tÞ; ~rr 2 X;

n̂n�~EEð~rr; tÞ ¼~00; ~rr 2 oX;

where oX is the boundary of the computational domain X. The spectrum of the solution~EEð~rr; tÞ is controlled
by the time dependence of ot~JJð~rr; tÞ. We use the linear edge elements of N�eed�eelec [25], which gives a system of

coupled ordinary differential equations (ODE) SeðtÞ þ c�2
0 Mo2t eðtÞ ¼ fðtÞ, where eðtÞ ¼ ½E1ðtÞ;E2ðtÞ; . . . ;

EJ ðtÞ�T. The electric field along the interior edge j is denoted EjðtÞ, where j ¼ 1; 2; . . . ; J and J is the total

number of interior edges. Here, the positive semi-definite ‘‘stiffness’’-matrix S 2 RJ�J represents the

r�r�-operator and the positive definite ‘‘mass’’-matrix M 2 RJ�J represents the identity operator. The
autonomous system of ODEs is integrated in time by the non-dissipative Newmark scheme [26]

½Mþ ðc0DtÞ2hS�eðnþ 1Þ ¼ ½2Mþ ðc0DtÞ2ð2h� 1ÞS�eðnÞ � ½Mþ ðc0DtÞ2hS�eðn� 1Þ; ð28Þ
where h controls the implicitness and hP 1=4 guarantees stability for all time steps. We set h ¼ 1=4 and use

the time step Dt ¼ h=c0. The PETSc-package [27] is employed to solve the sparse system of linear equations



Fig. 7. Surface discretization of three-dimensional bow-tie microwave resonator.

Fig. 8. The first 167 eigenfrequencies for the three-dimensional bow-tie microwave resonator.
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(28) by the conjugate gradient method with a zero fill-in incomplete Cholesky preconditioner. We used a

relative decrease of 10�12 in the residual norm as the termination criterion for the iterative solver, which

resulted in roughly 25 iterations per time step.

We exploit the frequency domain subspace algorithm to estimate the 167 lowest resonant frequencies

supported by the three-dimensional bow-tie microwave resonator. The estimated resonant frequencies are

shown in Fig. 8, where we have used the following procedure to eliminate the discretization error due to the

time integration scheme (28). Consider the rth eigenmode ~eer of Eq. (28) with the growth factor

q̂qr ¼ expði2pf̂f TD
r DtÞ, where f̂f TD

r is estimated by the frequency domain subspace algorithm. For this mode,
the time integration scheme (28) can be reduced to S~eer ¼ ð2pf̂f FD

r =c0Þ2M~eer, where f̂f FD
r Dt ¼ �iðq̂qr � 1Þ=

ð2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hq̂q2

r � ð2h� 1Þq̂qr þ h
p

Þ is the eigenfrequency of the eigenvalue problem formulated in frequency do-

main. Consequently, f̂f FD
r does not suffer from numerical errors due the time integration in Eq. (28). For

comparison, we also computed the reference values f EP
r by explicitly solving the frequency domain ei-

genvalue problem. The deviation jf̂f FD
r � f EP

r j=jf EP
r j is found to be less than 10�7 for all the estimated fre-

quencies. We used ARPACK [28] to solve the eigenvalue problem which has almost 48,000 degrees of

freedom.

It is difficult to estimate all 167 frequencies concurrently and therefore we use the following technique to
achieve accurate estimates with a relatively small computational cost. We partition the frequency band of

interest into a sequence of five sub-bands ðfl; fuÞ as shown in Table 3. The temporal part of the excitation

for each individual sub-band is based on a filter with a unity response within the sub-band and a null

response otherwise, as discussed in Section 4.1.2. The filters overlap each other somewhat so that all res-

onances can safely be detected. The computer time required for the FEM computation is, in general, many

orders of magnitude larger than the time needed for the estimation of the sought frequencies. Therefore, we

perform one FEM computation where the sub-bands A, C and E are excited simultaneously. The resonant

frequencies in the sub-band A can then be estimated to a high accuracy by using only the DFT points which
are residing within A and, thus, the out-of-band signals in C and E are effectively suppressed. We achieve

very high accuracy for the frequency estimates provided that the out-of-band disturbances are not too close

to the DFT points selected for the estimation. Similarly, we estimate the frequencies in C and E without any

additional FEM computations. Next, we perform a new FEM computation where the sub-bands B and D

are excited simultaneously and, similarly, the resonant frequencies are estimated for B and D separately.

Table 3 summarizes the parameters used for the frequency domain subspace algorithm applied to the

compound forward–backward signal yfbðnÞ, which was constructed from ten unknowns randomly chosen

from the FEM solution eðnÞ.
The computed spectrum for the bow-tie microwave resonator contains some very closely spaced ei-

genfrequencies. The smallest separation in frequency of two adjacent resonances is 9.2� 10�7/Dt. Conse-
quently, 2.2� 106 time steps are needed to get three DFT points in-between these two resonant frequencies.

The frequency domain subspace algorithm needs 23,000 time steps in total for the two FEM computations,

which includes the time steps used for the excitation. Thus, the frequency domain subspace algorithm
Table 3

The frequency band 0 < fDt < 0:1460 is divided into five sub-bands ðfl; fuÞ

Band flDt fuDt N S R maxr jf̂f FD
r � f EP

r j=jf EP
r j

A – 0.0720 3072 70 17 5.5� 10�8

B 0.0720 0.0935 3072 74 18 1.5� 10�9

C 0.0935 0.1085 5120 94 23 1.3� 10�9

D 0.1085 0.1280 7168 194 48 2.1� 10�9

E 0.1280 0.1460 12288 246 61 2.3� 10�8

The frequency domain subspace algorithm uses the parameters fl, fu, N , S and R to give estimates f̂f FD
r which are compared to f EP

r

computed from the corresponding eigenvalue problem formulated in the frequency domain.
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reduces the overall computation time with at least a factor 94 as compared to a standard DFT, possibly, in

combination with a Pad�ee approximation. In terms of accuracy for such a situation, the frequency domain

subspace algorithm clearly outperforms the DFT/Pad�ee-technique [11,12], which typically gives a relative
error of a couple per mille.

4.3. Test 3 – Cavity with aperture in free space

The third and last test case is a free-space computation for a PEC cavity with an aperture. Specifically,

we use the brick shaped cavity described in Section 4.1 (with r ¼ 0) and create an aperture in the wall at

y ¼ ly by removing the square defined by lx � d < x < lx and lz � d < z < lz, where d ¼ 4 mm. We exploit

the FDTD scheme to compute the electromagnetic fields, which are excited by the current loop shown in

Fig. 4. The fields are sampled at a number of randomly selected points inside the cavity and we use the

frequency domain subspace algorithm to estimate the resonant frequencies and the Q-factors of the cavity
with the aperture. The opened cavity is put at the center of a simulation box with metal walls and the

outward propagating wave is effectively absorbed by a sponge layer [29] which covers the truncating walls
of the simulation box. The free-space region in-between the cavity and the sponge layer measures 8 mm

along the Cartesian axis and the sponge layer is 8 mm thick.

We discretize the computational domain with the cell size h ¼ 1=4 mm and select the time step

Dt ¼ h=
ffiffiffi
3

p
c0. The spectrum of the excitation is chosen such that it would energize only the 25 lowest
Table 4

Estimated damping rates, resonant frequencies and quality factors of the 25 lowest resonances of a brick shaped cavity with an

aperture

Cavity with aperture Closed cavity

ĉcr (GHz) f̂fr (GHz) Q̂Qr (–) fr (GHz)

5.0060� 10�3 14.498 9.0986� 103 14.515

1.5920� 10�2 16.203 3.1975� 103 16.230

1.9234� 10�2 17.817 2.9102� 103 17.849

8.6146� 10�2 19.820 7.2280� 102 19.909

2.1109� 10�2 19.883 2.9590� 103 19.909

4.4507� 10�2 21.023 1.4840� 103 21.067

9.4405� 10�2 22.234 7.3989� 102 22.284

1.7637� 10�1 24.613 4.3841� 102 24.682

3.0030� 10�1 24.963 2.6115� 102 25.092

6.0868� 10�2 25.058 1.2933� 103 25.092

3.2613� 10�1 26.660 2.5682� 102 26.780

6.4300� 10�1 27.992 1.3677� 102 28.196

3.4987� 10�1 28.105 2.5237� 102 28.196

9.5757� 10�2 28.613 9.3873� 102 28.631

4.4163� 10�1 28.743 2.0447� 102 28.845

1.1421� 10�1 28.926 7.9568� 102 29.025

2.0803� 10�1 29.525 4.4587� 102 29.581

1.5056� 10�1 29.720 6.2013� 102 29.746

6.3299� 10�1 30.740 1.5257� 102 30.868

4.4013� 10�2 30.863 2.2030� 103 30.868

1.6539 31.647 6.0118� 101 31.905

1.8535� 10�1 31.897 5.4064� 102 31.905

3.2302� 10�1 31.966 3.1089� 102 32.068

5.2019� 10�2 31.976 1.9312� 103 32.068

1.9906� 10�1 32.429 5.1180� 102 32.452

The resonant frequencies for the corresponding closed cavity are included for comparison.
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eigenmodes of the corresponding closed cavity, i.e., the time-dependence is based on a lowpass filter with

fpDt ¼ 0:0156 and fsDt ¼ 0:0164. We exploit the frequency domain subspace algorithm to estimate the

resonances in the interval 06 fDt < 0:0185. We set the auxiliary model order S ¼ 204 and use 8192 samples
in time from six different points inside the cavity for the estimation. We find that R=2 ¼ 25, which is clearly

shown by the distribution of the singular values computed from Eq. (18). The estimated damping rates,

resonant frequencies and Q-factors are listed in Table 4, which also includes the eigenfrequencies computed

from Eq. (24) for the corresponding closed cavity in the same setting.

For all estimated quantities in Table 4, we tentatively estimate that the relative error due to the frequency

domain subspace algorithm is less than 10�4. This error can be reduced significantly by increasing N and/or

S as previously demonstrated. Additional FDTD computations with h ¼ 1, 1/2 and 1/3 mm indicated that

the discretization errors introduced by the FDTD scheme when h ¼ 1=4 mm is less than 5� 10�4 for the
complex frequencies b̂br ¼ �ĉcr þ i2pf̂fr. However, the relative error for the damping rates ĉcr and the quality

factors Q̂Qr are roughly estimated to be in the range from 3% to 12%. Again, the error introduced by the

frequency domain subspace algorithm can be made negligible as compared to the discretization errors of a

numerical scheme based on linear elements.

The signal model (2) allows for extrapolation of the sampled signal with respect to time. Consequently,

the complete response of a system can be determined inexpensively from a relatively short computation by

joining the non-autonomous part of the response with the autonomous part computed from the signal

model (2). To demonstrate this technique, we estimate the amplitudes âar in the signal model by linear
regression. The signal model is then evaluated for 150,000 time steps, which also includes the portion that

was used for the estimation. We compare this result with the output from the standard FDTD computation

for the same time interval. The comparison is performed in terms of a moving root-mean-square (RMS)

measure mðn; y; dmÞ ¼ ½ð2dm þ 1Þ�1 Pnþdm
m¼n�dm

ðyðmÞÞ2�1=2, where dm defines the length of the moving interval

used for the RMS value. In Fig. 9, the curve labeled A shows the moving RMS measure mðn; y1; 100Þ, where
y1 is the first component of y as computed by the FDTD scheme. The RMS measure of the error for the
Fig. 9. The curve labeled A shows the moving RMS measure mðn; y1; 100Þ and B shows mðn; ŷy1 � y1; 100Þ, where y1 is the first com-

ponent in the sampled data y as computed by the FDTD scheme. The moving RMS is defined as mðn; y; dmÞ ¼ ½ð2dm þ 1Þ�1Pnþdm
m¼n�dm

ðyðmÞÞ2�1=2.
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corresponding estimated time signal ŷy1 is given from mðn; ŷy1 � y1; 100Þ and it is shown by the curve labeled B

in Fig. 9. By virtue of the frequency domain subspace algorithm combined with the frequency selective

excitation, we achieve a relative error (measured in terms of the moving RMS) in the estimated time domain
signal which is roughly of the order 10�5 for the first 150,000 time steps.

The brute force FDTD computation needed 100 h to complete, which includes 10,590 time steps for the

excitation and the additional 150,000 time steps for the autonomous system. It takes 1.4� 106 time steps for

the signal y1 to decay to 10�5 of its maximum amplitude and a straight forward FDTD computation would

require roughly 36 days to complete. The frequency domain subspace algorithm needs only 8192 time steps

to estimate the frequencies and amplitudes of the signal model and together with the time steps used for the

excitation the total computation time is less than 12 h. The frequencies and amplitudes are estimated by the

frequency domain subspace algorithm in 6 s. All computations were performed on an ordinary desktop PC.
5. Conclusion

We have presented and tested a new frequency domain subspace algorithm for the estimation of reso-

nant frequencies and quality factors from the output produced by time domain computations. The method

can be interpreted as a frequency domain version of the well known ESPRIT algorithm. It uses a subset of

the DFT computed from the time domain data, where the selected DFT frequencies reside in the frequency
band of interest. This gives two advantages: (a) working on a subset of data lowers both the computation

time and the memory requirements, and (b) the selection of DFT points from a sub-band corresponds to a

band-pass filtering operation which suppresses out-of-band signals. The algorithm gives no transient effects,

which are inevitable using standard time domain filtering techniques. Thus, it is completely insensitive to

the normally troublesome spectral leakage phenomenon.

It was demonstrated by numerical tests, given a lossless and brick shaped cavity, that the frequency

domain subspace algorithm can simultaneously estimate the lowest 80 eigenfrequencies (excluding de-

generacy) with a relative error well below 10�12. These results were reproduced for the same cavity filled
with a material characterized by a homogeneous conductivity, which translates into Q-factors in the range

from 80 to 300. For lower Q-factors, the simultaneous estimation of 80 eigenfrequencies gives reduced

accuracy. However, it is possible to concurrently compute accurate estimates for ten resonances with Q-
factors as low as unity.

We also suggested an efficient procedure to generate the temporal dependence for relatively short ex-

citations with an a priori selected frequency spectrum. This technique provides us with a very effective

alternative to suppress unwanted resonances, which is useful for time domain computations in general. The

procedure exploits the well established digital filter design techniques first developed for signal processing
problems. Specifically, the discrete time dependence of the excitation is set to the impulse response of an

appropriate digital filter. The roll off and stop-band ripple of a low order filter can, with a low compu-

tational cost, be improved significantly by using the impulse response of the filter as the input to the filter

itself. Such an excitation has a dynamic range which makes the stop-band magnitude essentially zero, as

compared to the pass-band, for computations with 16 digits of precision.

The frequency domain subspace algorithm was exploited to estimate the resonant frequencies for a

lossless three-dimensional bow-tie microwave resonator. We extracted the 167 lowest resonant frequencies

from only two FEM computations with, in total, less than 23,000 time steps. The relative deviation in the
estimated frequencies is less than 10�7 as compared to the equivalent eigenfrequencies computed from the

standard eigenvalue problem formulated in the frequency domain. Here, a straightforward DFT requires at

least two orders of magnitude more time steps to resolve the interval in-between the two closest spaced

resonances with three DFT points. The DFT combined with a Pad�ee approximation typically achieves a

relative error on the order of one per mille.
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Given accurate estimates of the excited frequencies and dampings, it is a straightforward linear re-

gression problem to determine the corresponding amplitudes, although these are generally less accurately

estimated than the frequencies. Having all signal parameters available makes it possible to cheaply compute
the continuation of the time domain signal for an arbitrary number of subsequent time steps. One im-

portant application is, e.g., the computation of scattering parameters of systems with weakly damped

modes. To test this, we performed a free-space computation for a cavity with an aperture. The estimated

frequencies, dampings and amplitudes were used to evaluate the time domain signal beyond the initial

8192 time steps used for the estimation itself. The relative error (measured as a moving RMS) in the ex-

trapolated time domain signal was found to be roughly 10�5 for the first 150,000 time steps. The extrap-

olation of the time domain signal reduces the overall computer time with almost two orders of magnitude as

compared to a standard DFT where it is assumed that the final amplitude of the extrapolated response is
required to be reduced to a factor 10�5 of its maximum (in the moving RMS sense).

The frequency domain subspace algorithm decouples the estimation of frequencies and amplitudes from

the time domain differential equation solver. Thus, it is feasible to use a wide range of advanced and highly

efficient time domain solvers, including hybrid schemes, without the need of reverting to a corresponding

frequency domain formulation. By virtue of the high accuracy in the frequency estimates, the proposed

algorithm can be used in conjunction with higher order schemes and/or for extrapolation to zero cell size.

The frequency domain subspace algorithm is general in nature and, therefore, applicable to estimation

problems found in any applications involving harmonics, e.g., electrical circuit-theory, telecommunications,
acoustics, solid mechanics and quantum mechanics.
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